CHROM. 18 865

Note

Separation of dihydroxybenzoic acids and trihydroxybenzoic acids by two-dimensional thin-layer chromatography

HAZEL PECK*

Department of Biological Sciences, Sheffield City Polytechnic, Sheffield S1 1WB (U.K.) A. W. STOTT Department of Biochemistry, Scarborough District Hospital, Scarborough (U.K.) and J. B. TURNER Department of Chemistry, Sheffield City Polytechnic, Sheffield S1 1WB (U.K.) (Received June 10th, 1986)

Chromatographic methods for the separation of phenolic acids in general using paper¹⁻⁵ and thin-layer chromatography (TLC)^{6,7} are well established, but little attention has been directed to the polyhydroxybenzoic acids in particular^{8,9} and R_F data are incomplete. Resolution of an isomeric mixture using high-performance liquid chromatography¹⁰ and packed column gas–liquid chromatography (GLC)^{11–15} has proved unsatisfactory as have attempts using capillary column GLC with a SE-30 stationary phase in our laboratories.

These, and related compounds, are dietary components, being present in both naturally occurring foods, especially fruit and vegetables¹⁶ and matured distilled alcoholic beverages¹⁷. The presence in urine of some of the dihydroxybenzoic acid isomers has been reported¹⁵ and originates from both dietary intake and metabolic processes¹⁸, including ingestion of aspirin (acetylsalicylic acid)¹⁹. Benzoic acid derivatives are increased in ureamic patients on dialysis and may be toxic²⁰. Ingestion of benzoic acid, a widely used food preservative has been shown to provoke migraine attacks²¹, and measurement of chemically related compounds may prove useful in such patients.

Owing to scant information regarding the chromatographic properties of the polyhydroxybenzoic acids conclusive interpretation of chromatograms for their presence has previously been difficult. We, therefore, describe a simple two-dimensional TLC method for the separation of dihydroxybenzoic acids and trihydroxybenzoic acids. It is rapid, does not require the use of potentially carcinogenic solvent systems and may be applied to a wide range of samples.

EXPERIMENTAL

Materials

Cellulose-coated (1-mm layer) foil-backed TLC plates were purchased from Merck (Darmstadt, F.R.G.). Commercially available (highest purity) phenolic acids

F
Е
₹B
Ê

R_{p} values in both dimensions of compounds studied and their colour reaction with diazotised *p*-nitroaniline reagent

The common name is given in parenthesis when this differs from the accepted IUPAC name.

Compound	Phenolic compound	Trivial name	R_F value		Colour
.0.			First	Second	I
			dimension	dimension	
-	2,3-Dihydroxybenzoic acid		53	60	Brown/purple
2	2,4-Dihydroxybenzoic acid	β -Resorcylic $acid$	38	57	Orange/brown
3	2,5-Dihydroxybenzoic acid	Gentisic acid	60	51	Yellow-bleached
4	2,6-Dihydroxybenzoic acid	y-Resorcylic acid	81	28	Orange
5	3,4-Dihydroxybenzoic acid	Protocatechuic acid	19	43	Pale grey/brown
6	3,5-Dihydroxybenzoic acid	a-Resorcylic acid	29	31	Bright orange
7	2,3,4 Trihydroxybenzoic acid	Pyrogallolcarboxylic acid	22	17	Pale yellow
∞	2,4,6-Trihydroxybenzoic acid	Phloroglucinolcarboxylic acid	4	18	Orange
6	3,4,5-Trihydroxybenzoic acid	Gallic acid	61	23	Pale grey/brown
10	4-Hydroxy-3-methoxybenzoic acid	Vanillic acid	28	74	Purple
11	2-Hydroxy-2-(4'-hydroxy-3'-methoxy-	ł	41	48	Blue
	phenyl)ethanoic acid (4-Hydroxy-				
	3-methoxymandelic acid)	Vanillylmandelic acid	35	41	Purple/blue
12	2-Hydroxy-3-(4'-hydroxy-3'-methoxy-	×			
	phenyl)propanoic acid (4-Hydroxy-				
	3-methoxyphenyllactic acid)	I	41	48	Blue
13	4-Hydroxy-3-methoxyphenylacetic acid	Homovanillic acid	4	72	Blue/green
14	4-Hydroxy-3,5-dimethoxybenzoic acid	Syringic acid	24	73	Blue
15	2-Hydroxyphenylacetic acid	. 1	72	68	Purple
16	3-Hydroxyphenylacetic acid	-	48	49	Pink/purple
17	4-Hydroxyphenylacetic acid	ł	43	63	Purple
18	2-(2'-Hydroxybenzoylamino)ethanoic	Salicyluric acid, salicylglycine	32	60	Pink/red
	acid (2-Hydroxyhippuric Acid)				
19	2-Hydroxy-2-(4'-hydroxyphenyl)ethanoic	1	39	29	Pink
	acid (4-hydroxymandelic acid)				

2-ANISOLE-ACETIC ACID-WATER (70:29:1)

Fig. 1. Relative positions of compounds studied after two-dimensional TLC. The numbering corresponds to that shown in Table I. The hatched spots show the positions of the dihydroxybenzoic acids and the trihydroxybenzoic acids.

were used as reference compounds and solutions were prepared in ethanol. All solvents and chemicals were Analar grade with the exception of anisole, which was technical grade, and were purchased from BDH (Poole, U.K.).

Chromatography

Two-dimensional chromatography was carried out on 10 cm \times 10 cm TLC plates; the eluent in the first dimension was isopropanol-0.88 ammonia-water (8:1:1), that in the second dimension anisole-glacial acetic acid-water (70:29:1). Approximately 10 μ g of each compound were applied in a 10- μ l volume. The compounds were detected by spraying with saturated potassium carbonate solution followed by diazotised *p*-nitroaniline²².

RESULTS AND DISCUSSION

All the dihydroxybenzoic acids and trihydroxybenzoic acids produced various shades of yellow, and these are given in Table I with their R_F values in both dimensions. Fig. 1 shows their relative positions on the plate together with those of related phenolic acids. Run times in solvents 1 and 2 were approximately 90 min and 20 min, respectively.

This method can be applied to a wide range of samples, with prior extraction of the hydrobenzoic acids when concentrations are less than $1 \text{ g} \cdot 1^{-1}$ (ref. 23). We have examined fresh random urine samples from 15 subjects on unrestricted diets in this way and have verified the previously reported presence of the 3,4-, 3,5- and

2,5-dihydroxybenzoic acid isomers. We have also observed spots which have been tentatively identified as 2,6- and 2,4-dihydroxybenzoic acids and 3,4,5-, 2,4,6-, and 2,3,4-trihydroxybenzoic acids. The metabolic processes involved in the production of some of the dihydroxybenzoic acids are known but information relating to the origin and, in particular, the significance of the trihydroxybenzoic acids in human fluids requires investigation.

REFERENCES

- 1 M. D. Armstrong, K. N. F. Shaw and P. E. Wall, J. Biol. Chem., 218 (1956) 293.
- 2 S. L. Tompsett, Clin. Chim. Acta, 3 (1958) 149.
- 3 R. F. Coward and P. Smith, Clin. Chim. Acta, 14 (1966) 698.
- 4 A. W. Stott, Clin. Chim. Acta, 20 (1968) 181.
- 5 A. S. Saini, J. Chromatogr., 19 (1965) 619.
- 6 I. Smith and J. W. T. Seakins, in I. Smith and J. W. T. Seakins (Editors), Chromatographic and Electrophoretic Techniques, Vol. 1, Heinemann, London, 1976, p. 219.
- 7 R. L. Lyman, A. L. Livingston, E. M. Bickoff and A. N. Booth, J. Org. Chem., 23 (1958) 756.
- 8 J. Chrastil and J. T. Wilson, J. Chromatogr., 152 (1978) 183.
- 9 A. J. Hutt, J. Caldwell and R. L. Smith, Xenobiotica, 12 (1982) 601.
- 10 K. Vande Casteele, H. Geiger and C. F. Van Sumere, J. Chromatogr., 240 (1982) 81.
- 11 M. Matsson and G. Petersson, J. Chromatogr. Sci., 15 (1977) 546.
- 12 C. W. Williams, Anal. Biochem., 11 (1965) 224.
- 13 H. Morita, J. Chromatogr., 71 (1972) 149.
- 14 W. C. Butts, Anal. Biochem., 46 (1972) 187.
- 15 R. F. Coward and P. Smith, J. Chromatogr., 45 (1969) 230.
- 16 J. B. Harborne, Biochemistry of Phenolic Compounds, Academic Press, London, 1964, p. 264.
- 17 M. Lehtonen, J. Assoc. Off. Anal. Chem., 66 (1983) 71.
- 18 S. L. Tompsett, J. Pharm. Pharmacol., 13 (1961) 115.
- 19 S. K. Bakar and S. Niazi, J. Pharm. Sci., 72 (1983) 1020.
- 20 N. B. Record, J. W. Prichard, B. B. Gallagher and D. Seligson, Arch. Neurol., 21 (1969) 387.
- 21 M. W. Turner and S. F. Soothill, Lancet, ii (1983) 865.
- 22 A. W. Stott, J. R. Lindsay Smith, P. Hanson and R. Robinson, Clin. Chim. Acta, 63 (1975) 7.
- 23 I. Smith and J. W. T. Seakins, in I. Smith and J. W. T. Seakins (Editors), Chromatographic and Electrophoretic Techniques, Vol. 1, Heinemann, London, 1976, p. 226.